Schechter Luminosity Function

This example demonstrates how to sample galaxies from a general Schechter luminosity function as implemented in SkyPy.

Joint Redshift-Magnitude Distribution

The number density of galaxies \(N\) with luminosities \(L\) in a cosmic volume \(V\) is widely observed to follow the Schechter luminosity function \(\phi\):

\[\phi(L) = \frac{{\rm d}N}{{\rm d}L{\rm d}V} = \phi_*\left(\frac{L}{L_*}\right)^\alpha{\rm exp}\left[-\frac{L}{L_*}\right].\]

In SkyPy we reparameterise this distribution in terms of the absolute magnitude \(M\) of each galaxy:

\[\phi(M) = \frac{{\rm d}N}{{\rm d}M{\rm d}V} = \frac{2}{5}{\rm log}(10)\phi_*10^{\frac{2}{5}(M_*-M)(\alpha+1)} {\rm exp}\left[-10^{\frac{2}{5}(M_*-M)}\right].\]

In general, \(\phi_*\), \(M_*\) and \(\alpha\) can be redshift dependent, resulting in a joint redshift-magnitude distribution \(\phi(M, z)\). In SkyPy, sampling from this joint distribution is implemented in skypy.galaxies.schechter_lf() where both phi_star and m_star can be either constants or functions of redshift. In this example, we follow a common parameterisation where phi_star and m_star are exponential and linear functions of redshift respectively. Samples are generated for a given sky_area and over a given redshift range z_range up to a limiting apparent magnitude mag_lim with shot noise. The values of the parameters are taken from the B-band luminosity model for star-forming galaxies in López-Sanjuan et al. 2017 1.

from astropy.cosmology import FlatLambdaCDM
from astropy.modeling.models import Linear1D, Exponential1D
from astropy.table import Table
from astropy.units import Quantity
from matplotlib import pyplot as plt
import numpy as np
from skypy.galaxies import schechter_lf

z_range = np.linspace(0.2, 1.0, 100)
m_star = Linear1D(-1.03, -20.485)
phi_star = Exponential1D(0.00312608, -43.4294)
alpha, mag_lim = -1.29, 30
sky_area = Quantity(2.381, "deg2")
cosmology = FlatLambdaCDM(H0=70, Om0=0.3)
redshift, magnitude = schechter_lf(z_range, m_star, phi_star, alpha,
                                   mag_lim, sky_area, cosmology, noise=True)

ALHAMBRA B-Band Luminosity Function

Here we compare our sampled galaxy B-band magnitudes in four different redshift slices to the observed B-band magnitude distribution of star-forming galaxies in the ALHAMBRA survey and the median-redshift model from López-Sanjuan et al. 2017. The data file can be downloaded here.

data = Table.read("lopez_sanjuan+17_B1.ecsv", format='ascii.ecsv')
fig, ((a1, a2), (a3, a4)) = plt.subplots(nrows=2, ncols=2, constrained_layout=True)
bins = np.linspace(-24, -14, 35)
z_slices = ((0.2, 0.4), (0.4, 0.6), (0.6, 0.8), (0.8, 1.0))

for ax, (z_min, z_max) in zip([a1, a2, a3, a4], z_slices):

    # Redshift grid
    z = np.linspace(z_min, z_max, 100)

    # SkyPy simulated galaxies
    z_mask = np.logical_and(redshift >= z_min, redshift < z_max)
    dV_dz = (cosmology.differential_comoving_volume(z) * sky_area).to_value('Mpc3')
    dV = np.trapz(dV_dz, z)
    dM = (np.max(bins)-np.min(bins)) / (np.size(bins)-1)
    phi_skypy = np.histogram(magnitude[z_mask], bins=bins)[0] / dV / dM

    # ALHAMBRA Survey star-forming galaxies (López-Sanjuan et al. 2017)
    M_data = data[f'MB_{z_min:.1f}_{z_max:.1f}']
    phi_data = 10 ** data[f'phi_{z_min:.1f}_{z_max:.1f}']

    # Median-redshift Schechter function
    L = 10 ** (0.4 * (m_star(z) - bins[:, np.newaxis]))
    phi_model_z = 0.4 * np.log(10) * phi_star(z) * L ** (alpha+1) * np.exp(-L)
    phi_model = np.median(phi_model_z, axis=1)

    # Plotting
    ax.step(bins[:-1], phi_skypy, where='post', label='SkyPy', color='r', zorder=3)
    ax.plot(M_data, phi_data, 's', mfc='c', mec='k', label='López-Sanjuan+17')
    ax.plot(bins, phi_model, label='Model', color='b')
    ax.text(-14.3, 5e-7, r'${:.2f} \leq z < {:.2f}$'.format(z_min, z_max))
    ax.set_xlabel(r'$M_B$')
    ax.set_ylabel(r'$\log_{10} \Phi \, [\mathrm{Mpc}^{-3} \, \mathrm{mag}^{-1}]$')
    ax.set_yscale('log')
    ax.set_xlim([-14, -24])
    ax.set_ylim([3e-7, 3e-2])

a1.legend(loc=6, fontsize='small', frameon=False)
plt.show()
plot schechter

References

1

López-Sanjuan, C. et al., 2017A&A…599A..62L

Total running time of the script: ( 0 minutes 2.316 seconds)

Gallery generated by Sphinx-Gallery